Skip to main content

Posts

Showing posts with the label Superluminal communication

Tachyon

A tachyon (pronounced /ˈtækiˌɒn/; Greek: ταχύς, takhus, "swift" + English: -on "elementary particle") is a hypothetical subatomic particle that travels faster than the speed of light. The first description of tachyons is attributed to German physicist Arnold Sommerfeld; however, it was George Sudarshan[citation needed], Olexa-Myron Bilaniuk, Vijay Deshpande and Gerald Feinberg (who originally coined the term in the 1960s) that advanced a theoretical framework for their study. Tachyonic fields have appeared theoretically in a variety of contexts, such as the bosonic string theory. In the language of special relativity, a tachyon is a particle with space-like four-momentum and imaginary proper time. A tachyon is constrained to the space-like portion of the energy-momentum graph. Therefore, it cannot slow down to subluminal speeds. Even if tachyons were conventional, localizable particles, they would still preserve the basic tenets of causality in special relativity an...

Evanescent wave coupling

In optics, evanescent wave coupling is a process by which electromagnetic waves are transmitted from one medium to another by means of the evanescent, exponentially decaying electromagnetic field. Coupling is usually accomplished by placing two or more electromagnetic elements such as optical waveguides close together so that the evanescent field generated by one element does not decay much before it reaches the other element. With waveguides, if the receiving waveguide can support modes of the appropriate frequency, the evanescent field gives rise to propagating wave modes, thereby connecting (or coupling) the wave from one waveguide to the next. Evanescent wave coupling is fundamentally identical to near field interaction in electromagnetic field theory. Depending on the impedance of the radiating source element, the evanescent wave is either predominantly electric (capacitive) or magnetic (inductive), unlike in the far field where these components of the wave eventually reach the ra...

Group velocity

The group velocity of a wave is the velocity with which the overall shape of the wave's amplitudes — known as the modulation or envelope of the wave — propagates through space. For example, imagine what happens if a stone is thrown into the middle of a very still pond. When the stone hits the surface of the water, a circular pattern of waves appears. It soon turns into a circular ring of waves with a quiescent center. The ever expanding ring of waves is the wave group, within which one can discern individual wavelets of differing wavelengths traveling at different speeds. The longer waves travel faster than the group as a whole, but they die out as they approach the leading edge. The shorter waves travel slower and they die out as they emerge from the trailing boundary of the group.

Superluminal communication

Superluminal communication is the term used to describe the hypothetical process by which one might send information at faster-than-light (FTL) speeds. All empirical evidence found by scientific investigation indicates that it is impossible in reality. Some theories and experiments include: * Group velocity > c experiments * Evanescent wave coupling * Tachyons * Quantum non-locality According to the currently accepted theory, three of those four phenomena do not produce superluminal communication, even though they may give that appearance under some conditions. As for tachyons, their existence remains hypothetical; even if their existence were to be proven, attempts to quantize them appear to indicate that they may not be used for superluminal communication, because experiments to produce or absorb tachyons cannot be fully controlled. If wormholes are possible, then ordinary subluminal methods of communication could be sent through them to achieve superluminal transm...